Neurofilament proteins in avian auditory hair cells.

نویسندگان

  • E C Oesterle
  • D I Lurie
  • E W Rubel
چکیده

The distribution of middle-weight neurofilament protein (NF-M), an intermediate filament of neurons, was examined in the developing and mature avian inner ear by using immunocytochemical techniques. NF-M was detected in auditory hair cells and VIIIth cranial nerve neurons. NF-M-positive hair cells are first detected at embryonic day 11 (E11) in superior hair cells in the mid-proximal (mid-frequency) region of the chicken basilar papilla. With time, increasing numbers of hair cells express NF-M. Two developmental gradients occur: 1) a radial gradient, in which superior hair cells are labeled first, and progressively more inferiorly located hair cells are labeled during ontogeny, and 2) a longitudinal gradient, in which hair cells in the mid-proximal region are labeled first, and then progressively more distal (low-frequency) hair cells are labeled. There is also a small proximally directed progression of NF-M expression. By E19, NF-M-positive hair cells are found throughout the distal and mid-proximal regions, and this expression is maintained through 3 weeks posthatching. By 22 weeks posthatching, NF-M staining in hair cells is markedly diminished; staining is seen in only a few tall hair cells in the distal one-fourth of the papilla and in short hair cells in the distal one-half of the papilla. NF-M is never expressed by hair cells at the proximal (high-frequency) end of the papilla at any time examined. These findings suggest that some cell types that have traditionally been classified as nonneural may express neurofilament and that the basilar papilla of the neonatal chicken is not morphologically mature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activin potentiates proliferation in mature avian auditory sensory epithelium.

Humans and other mammals are highly susceptible to permanent hearing and balance deficits due to an inability to regenerate sensory hair cells lost to inner ear trauma. In contrast, nonmammalian vertebrates, such as birds, robustly regenerate replacement hair cells and restore hearing and balance functions to near-normal levels. There is considerable interest in understanding the cellular mecha...

متن کامل

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Syntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations

Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...

متن کامل

Syntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations

Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...

متن کامل

Presynaptic terminals in hyaline cells of normal and overstimulated chick inner ears.

Hyaline cells are non-sensory epithelial cells of the vibrating part of the basilar membrane of chicks; they receive an extensive efferent innervation. Although these anatomical features suggest roles in auditory transduction, very little is known about the function of these cells. One possible way to understand function is by lesion experiments. We used synapsin-specific antibodies to study ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 379 4  شماره 

صفحات  -

تاریخ انتشار 1997